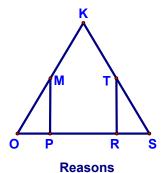

$$m_{\angle}P + m_{\angle}R < 180$$

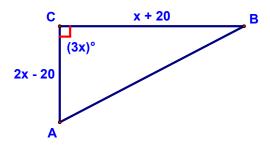
PQ < QR

Write an inequality to describe the restrictions of x.


9.

Given: $\overline{OP} \cong \overline{RS}$ $\overline{KO} \cong \overline{KS}$

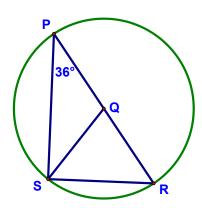
M is the midpoint of \overline{OK}


T is the midpoint of KS

Prove: $\overline{MP} \cong \overline{TR}$

Statements

Is △ABC isosceles?


12.

Given: ⊙Q

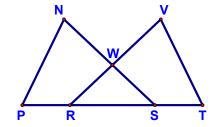
 $\overline{PS} \perp \overline{SR}$ $m_{\angle}P = 36^{\circ}$

Find: a. m∠PSQ b. m∠R

Remember - we haven't yet proved that the sum of the measure of the angles of a Δ is 180°!!

Prove that the median to the base of an isosceles Δ bisects the vertex \angle .

Given:


Prove:

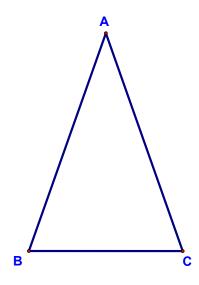
Statements	Reasons

16.

Given: PR ≈ S1

 $\frac{\overline{PR}}{\overline{NP}} \cong \frac{\overline{ST}}{\overline{VT}}$ $\angle P \cong \angle T$

Statements Reasons


Given: $\angle A$ is the vertex of an isosceles \triangle

The number of degrees in $\angle B$ is twice the number of centimeters in \overline{BC}

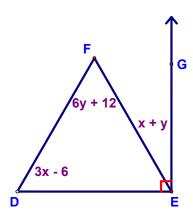
The number of degrees in $\angle C$ is three times the number of centimeters is \overline{AB}

$$m_{\angle}B = x + 6$$

 $m_{\angle}C = 2x - 54$

Find: The perimeter of $\triangle ABC$

22.


Given: FG ≈ JH

∠FGH ≅ ∠JHG

 G H

Statements Reasons

Find: $x, y, and m \angle F$

